Метод конечных разностей в Mathcad

В случае краевых задач для линейных дифференциальных уравнений  в Mathcad применяются формулы для аппроксимации производных соответствующими конечно – разностными отношениями. Это позволяет свести решение дифференциальных уравнений к решению системы линейных уравнений. Результаты получают в дискретных i – ых точках интервала решения задачи. При этом отрезок [a,b] разбивается на n частей с шагом h =(b-a)/n. Для аппроксимации соответствующих производных в Mathcad используют следующие формулы: 

Метод конечных разностей в MathcadТаким образом, сделав соответствующую замену, получаем систему линейных уравнений, решение которой средствами Mathcad не представляет сложностей. Решение задачи методом конечных разностей приведено на листинге 

 

Метод конечных разностей в Mathcad